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Abstract

Membrane-interaction quantitative structure activity relationship (MI-QSAR) analysis was applied to a data set with 18
compounds in 18 different membranes. MI-QSAR was used to estimate the ADMET properties including the transport of
organic solutes through biological membranes. The most important descriptors are the aqueous solvation free energy, FH2O,
and diffusion coefficient for all membranes. The correlation coefficient,r2, and cross-validation correlation coefficient,q2, for
DMPG membrane is 0.850 and 0.770, respectively. The relationship between FH2O and permeability is nonlinear. But the detail
effect of aqueous solvation free energy and diffusion coefficient to the permeability depends on the type of membrane. The final
models also support the solution–diffusion mechanism of transport is important in membrane.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Drug discovery and development is an extremely
ime-consuming and costly process. For every drug
hat reaches the market, there are more than 10,000
ompounds synthesized, characterized, and tested for
iological effects. Hundreds of millions of dollars are

nvested in basic research and clinical studies which
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lead to the FDA approval and subsequent marketing
new drug. Traditionally, drugs have been “discover
predominantly through random, or targeted, scree
efforts, followed by small structural changes in the l
molecule to optimize the properties responsible fo
desired activity. It takes between 7 and 10 years f
initiation of the preclinical drug discovery program
initial marketing of resulting drug (excluding regu
tory delays) (Smith, 2002).

The study conducted to determine the expens
bringing a drug to the pharmaceutical market t
place in 1979, at which time the cost was estim
to be US$ 54 million (Outlook, 2003). The most recen
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data indicates that this figure has ballooned to US$ 897
million in 2003 (Kaitin, 2003). Moreover, despite the
tremendous development of many new technologies,
and a 200-fold increase in initial screening capacity
over the past decade, the number of drug candidates
entering development remains relatively unchanged
over the past 20 years. The fundamental problem seems
to be the lack of quality in the lead compounds and
the corresponding low success rate in the attempted
development of these compounds into drug candidate.
It is clear that the pharmaceutical industry needs new
approaches to lead discovery that will generate lead
compounds that will be translate into a higher rate of
success in subsequent development efforts.

Computer-aided molecular modeling is still a rel-
atively new field, with exciting new methods and
applications being reported at a staggering rate. New
methods of performing pharmacophore searching,
docking, structure-based design (SBD), quantitative
structure–activity relationship (QSAR), quantitative
structure–property relationship (QSPR), and molecu-
lar similarity (MS) comparison studies are continually
being proposed. Some of the approaches are ligand-
based (Liu et al., 2003), others are receptor-dependent
(Pan et al., 2004). Many statistical methods are also
used in computer-aided drug design (CADD), such
as multiple linear regression (Ecker et al., 1996), par-
tial least-square (PLS) regression (Glen et al., 1989),
genetic algorithms (Fleischer et al., 1997), cluster
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successfully applied to construct robust models for both
eye and skin irritation for a structurally diverse train-
ing set (Kulkarni et al., 2001), and to predict the Caco-2
cell permeability of a diverse set of drugs (Kulkarni et
al., 2002). It has subsequently occurred to us that MI-
QSAR is ideally suited for construction QSAR models
for membrane uptake and transport measures so that it
can be used to evaluate the absorption and distribution
properties in the early stage of drug development.

It is known that solute transport through a polymer
membrane is either via the pore or partition mechanism.
In the pore mechanism, the solute diffuses through
the water filled pores and in the partition mechanism
the solute transport is presumed to occur by a process
involving the dissolution of the solute within the poly-
mer followed by the diffusion through the membrane.
Recent experimental studies of membrane lipids have
produced increasingly detailed pictures of the struc-
ture of fluid phase lipid at the level of mean positions
and conformations of constituent molecular groups.
These precise experiments yielded structure details that
arise from the complex set of intermolecular inter-
actions. Computer simulation is the only theoretical
approach capable of probing the nature of the inter-
actions between atoms on lipid and water molecules,
and the mechanism by which these interactions lead
to the observed structures. Studies of Caco-2 cell per-
meability in dimyristoylphosphatidylcholine (DMPC)
membrane have examined the atomic level structure
of this system. By doing simulations that are consis-
t ady
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ent with available experimental data, we have alre
ained an atomic level structural and dynamical pic
f the system. Extension of the database of predic

rom simulations to a wider class of biologically r
vant lipid systems is the aim of the work presen
ere.

Atomic level simulations of lipid of dipalm
oylphosphatidylcholine (DPPC) and even m
omplex systems, including lipid–cholesterol and l
rotein systems have been carried out by several g
ver the past several years (Essmann and Berkowit
999; Katragadda et al., 1999; Petrache et al., 20).
ur studies in DPPC, dimyristoylphosphatidylcho

DMPC) and dipalmitoylphosphatidic acid (DPP
umulated plenty of experience in membrane dyna
imulation (Klein et al., 1999) and provided the impe
us for us to go further. The goal of the study repo
ere is to demonstrate the applicability of MI-QS
analyses (Cronin, 1996) and artificial neural network
(Winkler and Burden, 2000; Burden et al., 2000; Jal
Heravi and Parastar, 2000).

It has been suggested that computational model
reliable prediction of ADMET properties are prom
ing as early screening tools for drug candidates
for designing more successful combinatorial librar
(Rose and Stevens, 2003; Winkler and Burden, 20).
In our preceding study (Iyer et al., 2002), we suc-
cessfully applied membrane-interaction quantita
structure activity relationship (MI-QSAR) analysis
develop predictive models of blood–brain barrier pa
tioning of organic compounds by simulating the int
action of an organic compound with phospholipid
rich regions of cellular membranes with resulti
significant MI-QSAR models (r2 = 0.845,q2 = 0.795).
These computational models have been applied to
throughput screening and were demonstrated to
highly predictive. MI-QSAR analysis also has be
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analysis in different phospholipids and to predict the
drug ADMET properties. We explored structurally
diverse drugs and their interactions with variety of
phospholipids through molecular dynamics simulation.
The ability of a molecule to permeate cell membranes
by passive diffusion is primarily dependent on its par-
titioning into the membrane layer. The most frequently
used physicochemical property to represent this parti-
tioning, and the prediction of cellular permeability, is
the log of the (1-octanol/water) partition coefficient,
logP. Other descriptors and modeling/QSAR work
has been done to better understand cell permeability.
The hydrogen bonding capacity and molecular surface
properties of the solute have been used to construct
correlation models for cell permeability. Based on our
experience in previous studies, our focus here is to con-
struct a model using as few as possible descriptors.

2. Materials and methods

2.1. Permeation coefficients

The dependent variable used in MI-QSAR analysis
is the Caco-2 cell permeability coefficient.Yazdanian
et al. (1998)performed permeability experiments on a
data set of 38 structurally and chemically diverse drugs
ranging in molecular weight from 60 to 515 amu and
varying in net charge at pH 7.4. We used only 18 of
them as a training set, which proportionally distributed
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Table 1
Drug name, structure, and permeability coefficient for the training
set

Compound Permeability (10−6 cm/s)

Acyclovir 0.25
Alprenolol 25.3
Atenolol 0.53
Bremazocine 8.02
Caffeine 30.8
Clonidine 21.8
Dexamethasone 12.2
Diazepam 33.4
Dopamine 9.33
Ganciclovir 0.38
Metoprolol 23.7
Nadolol 3.88
Phenytoin 26.7
Pindolol 16.7
Salicylic acid 22.00
Sulfasalazine 0.30
Terbutaline 0.47
Timolol 12.8

were used as the initial structures in conformational
sampling.

Totally 18 different phospholipids were selected as
model phospholipids in this study, which are listed in
Table 2. For those phospholipids with available atomic
coordinates, their structures were constructed based on
the atomic coordinates. Take dimyristoylphosphatidyl-
glycerol (DMPG,Fig. 1) as example: its structure was

Table 2
Phospholipids used to construct the membrane monolayer

DMPE Dimyristoylphosphatidylethanolamine
DMPG Dimyristoylphosphatidylglycerol
DMPI Dimyristoylphosphatidylinositol
DOPC Dioleoylphosphatidylcholine
DOPE Dioleoylphosphatidylethanolamine
DOPS Dioleoylphosphatidylserine
DPPC Dipalmitoylphosphatidylcholine
DPPE Dipalmitoylphosphatidylethanolamine
DPPG Dipalmitoylphosphatidylglycerol
DPPI Dipalmitoylphosphatidylinositol
DPPS Dipalmitoylphosphatidylserine
DSPC Distearoylphosphatidylcholine
DSPE Distearoylphosphatidylethanolamine
DSPG Distearoylphosphatidylglycerol
PDHS N-Palmitoyldihydrosphingomyelin
PSPM N-Palmitoylsphingomyelin
SPM240 N-Tetracosanoicsphingomyelin
SPM241 N-Tetracosenoicsphingomyelin
etween the maximum and minimum value of the
eability coefficient and fully represents the wh
ataset.Table 1contains the permeability coefficie
alues for 18 structurally diverse drugs used as
raining set of compounds.

.2. MI-QSAR analysis applied to the training set

.2.1. Step 1: Building solute molecules and
hospholipids monolayer

All the solute molecules of the training and t
ets, seeTable 1, were built usingHyperChem 6.0
oftware. Partial atomic charges were computed u
he AM1 semi-empirical method, which was imp
ented in the HyperChem program. Each struc
as energy minimized using the quantum mechan
ethod, also implemented in HyperChem, without
eometric constraint. The energy-minimized struct
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Fig. 1. Numbering of atoms and torsion angles for the DMPG molecule according to Pashcher. Atoms other than P, O, and N are carbon atoms
with 1, 2, or 3 hydrogen atoms attached.

constructed in HyperChem 6.03 based on the crys-
tal structure atomic coordinates fromPascher et al.
(1987). Calculations at the semi-empirical AM1 level
were carried out, and DMPG was energy minimized
using the quantum mechanical method. An assembly
of 25 DMPG molecules (5× 5× 1) in (x,y,z) direc-
tions, respectively, was used as the model membrane
monolayer. The size of the monolayer simulation sys-
tem was constructed according to the symmetry of the
crystal structure. The cell parameters for an individual
phospholipids molecule were 10.5Å × 8.5Å × 45Å,
γ = 95.2. These parameters result in an average surface
area per phospholipid of 89.25̊A2, which is close to
the reported value of about 88Å2 for the fully hydrated
fluid lamellar phase of DMPG. It was found that the
estimated order parameters for these two model bilay-
ers agree with one another suggesting that smaller
assembly is adequate for modeling short-range prop-
erties.

Phospholipids for which atomic coordinates are not
available, their structure were constructed based on the
atomic coordinates of their analogues. For example,
DSPC was built from the crystal structure atomic coor-
dinates of DMPC by extending the four -CH2- groups
in a trans conformation to each of two chains.

When surface areas are known for selected phos-
pholipids the data is used to assembly the monolayer.
If surface areas are not available, the head group vol-
ume must be the same for conditions where headgroups
are chemically identical. The Eq.(1) (Sugar, 1979) was
u gues
a

S

whereS is the molecular surface area,n the number
of hydrocarbon chains per lipid molecule,Σ the cross-
section of the hydrocarbon chains perpendicular to the
chain axis, andϕ is the angle of the tilts between the
hydrocarbon chain axis and the layer normal.

2.2.2. Step 2: Docking
To prevent unfavorable van der Waals interac-

tions between a solute molecule and the membrane
molecules, the center phospholipid molecule, located
at position (x,y) = (3,3) of the 5× 5 monolayer, and a
test solute molecule was docked into the space cre-
ated by the missing phospholipid molecule. Each of
the test solute molecules of the permeation data set
was docked at three different positions in each phos-
pholipid monolayer with the most polar group of the
solute molecule facing toward the headgroup region
of the monolayer. Three corresponding MDS models
were generated for each solute molecule with regard to
the trial positions of the solute molecule in the mono-
layer, which were: (1) solute molecule in the headgroup
region, (2) solute molecule between the headgroup and
the aliphatic chains, and (3) solute molecule in the tail
region of the aliphatic chains. The three different ini-
tial MDS positions of acyclovir, one of the training set
solute molecules in DMPG, are shown inFig. 2a to
illustrate this dock.

2.2.3. Step 3: Energy minimization
The energy minimization and following molecular

d im
p ove
u ions
b ergy
o pest
sed to obtain relating surface area from its analo
nd then to build the structure.

= nΣ

cosϕ
(1)
ynamic simulation were performed using a Mols
ackage with an extended MM2 force field. To rem
nfavorable high-energy van der Waals interact
etween solute and phospholipid molecules, the en
f the system was minimized by a series of stee
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Fig. 2. (a) The side view of an acyclovir molecule docked into DMPG
monolayer at three different positions before the energy minimization
with hydrogen atoms not shown. (b) The lowest energy geometry of
a DMPG–acyclovir complex during MDS with hydrogen atoms not
shown.

descent and conjugate gradient minimization steps. The
energy convergence criterion was a gradient of less than
0.5 kcal/(̊A mol). Convergence was generally achieved
within less than 10 ps.

2.2.4. Step 4: Molecular dynamics simulation
The model monolayer was first heated to 20 K and

then to 50 K and from that point in increments of 50 K
to a final temperature of 311 K. At each temperature
increment, 2 ps of MDS was carried out to allow for
structural relaxation and distribution of kinetic energy
throughout the system. After 311 K temperature was
achieved, the whole system was held at this temper-
ature and production trajectories were recorded every
0.1 ps over a 50 ps range for each solute of the dataset.
Concurrently, the potential energy of the whole system
and the interaction of each phospholipid and the solute
were also recorded. Only a single solute molecule in
one kind of membrane was explicitly considered in
each MDS. Each of the solute molecules was placed
at each of the three different positions in the mono-
layer as described above. The lowest energy geometry
of the solute molecule in the monolayer was sought

Fig. 3. Plot of total potential energy vs. time for acyclovir embedded
in the model of DMPG monolayer.

using each of the three trial solute positions. The ener-
getically most favorable geometry of acyclovir in the
model DMPG monolayer is shown inFig. 2b. And
the MDS trajectory of acyclovir in the model DMPG
monolayer is also shown inFig. 3. It is obvious from
the plot that this complex system deceases its potential
energy and that equilibrium is achieved gradually.

2.2.5. Step 5: Calculation of descriptors
Many experiments (Patel and Manley, 1995; Stern

et al., 1993) suggest that the permeability coefficient
(Pm) can be estimated as the product of the solubility
and diffusion coefficients, which has a relationship as
Eq.(2),

Pm= KDm (2)

whereDm is the membrane diffusion coefficient,K is
the membrane-donor partition coefficient.

We have previously demonstrated (Kulkarni et al.,
2002.) that the permeation coefficient of solutes corre-
lates with the aqueous solvation free energy, F(H2O)
(r2 = 0.75,q2 = 0.71). Our purpose in this study are to
correlate the relationship between permeation coeffi-
cient and diffusion coefficient by using dynamic param-
eters based on other membrane phospholipids also
to correlate this relationship with as few as possible
descriptors.Table 3lists the calculated descriptors in

Table 3
T

F
F
l
E cules
D

he descriptors used in the MI-QSAR descriptor pool

H2O The aqueous solvation free energy
OCT The 1-octanol solvation free energy

ogP The 1-octanol/water partition coefficient
coh The cohesive packing energy of the solute mole

Diffusion coefficient of a solute in the membrane
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this study. It should be noted that FH2O, FOCT, and
logP are computed using intra-molecular computa-
tional methods. This is also true for Ecoh, the cohesive
energy, which is measurement of the energy required
to remove a molecule from being surrounded by other
molecules identical to itself.

The mean square displacement method was used to
calculate diffusion coefficients. In a molecular system,
a molecule moves in three dimensions and its motion of
an individual molecule does not follow a simple path.
If the path is examined in close detail, it will be seen to
be a good approximation to a random walk. Mathemat-
ically, Einstein showed that mean square displacement
grows linearly with time, which is shown in Eq.(3)
(Einstein, 1926):

< r2 >= 6D t + C (3)

where <r2> is the mean square distance andt is time.
D and C are constants. The constantD is the most
important of these and defines the diffusion rate. It is
called the diffusion coefficient. Also, since we have
many atoms to consider we can calculate a square
displacement for all of them. This is what makes the
mean square displacement (or MSD for short) scientif-
ically significant. Through its relation to diffusion it is
a measurable quantity, one which relates directly to the
underlying motion of the molecules. For each trajectory
frame in the MDS trajectory, the average movement
�di of a solute molecule, relative to the previous frame,
w

2
m

uilt
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els. Detailed descriptions and methods about the GFA
were published in previous papers (Rogers and Hopfin-
ger, 1994; Rogers, 1991). The best model was judged
jointly by the correlation coefficient of fit,r2, and the
leave-one-out cross-validation correlation coefficient,
q2.

3. Results

The aqueous solvation free energy, FH2O has been
shown to correlate to aqueous solubility as would be
expected. For all phospholipids membranes, the one-
term models are same, which contain only FH2O, and
are described by:

P = 55.212− 31.634× FH2O;

n = 18, r2 = 0.686, q2 = 0.635 (4)

Here, n is the number of the trials,r2 the correla-
tion coefficient, andq2 is the leave-one-out cross-
validation correlation coefficient. Because FH2O is an
intra-molecular solute descriptor (i.e. it is independent
of membrane or interaction of the solute-membrane
complex system, for all membrane monolayers, the
one-term model remains constant.

By taking into account both first order and second
order terms, the following model produces higherr2

andq2 value for all membranes than model(4) has:

P 2

n

hip
b q.
(
v sed
o

y
u no-
l del
t ke
D

P

ant
i

as determined.

.2.6. Step 6: Construction of a model for the
embrane
MI-QSAR models for each membrane were b

nd optimized using multidimensional linear regr
ion fitting and the genetic function approximat
GFA) (Rogers and Hopfinger, 1994), which is a multi-
imensional optimization method based on the gen
lgorithm paradigm. Both linear and quadratic r
esentations of each of the descriptor values w
ncluded in the trial descriptor pool, and MI-QSA

odels were built as a function of the number
escriptor terms in the model. Statistical significanc

he optimization of an MI-QSAR model was based
riedman’s lack of fit (LOF) measure. The LOF m
ure is designed to resist overfitting which is a prob
ften encountered in construction of statistical m
= 40.156− 14.653× FH2O ;

= 18, r2 = 0.764, q2 = 0.704 (5)

This model suggests a nonlinear relations
etween FH2O and the permeability coefficient. E
5) is mathematically better than Eq.(4) based onr2

alue, and it is also more statistically significant ba
n q2 value.

Combining the FH2O with other descriptors b
sing nonlinear expression, all of phospholipids mo

ayers produce statistically significant prediction mo
han only using FH2O square as descriptor. Ta
MPG as example, the model is:

= 29.613− 52.320× (FH2O − 0.826)2 + 0.455

×D; n = 18, r2 = 0.850, q2 = 0.770 (6)

This shows that the model has signific
mprovement both on correlation coefficient,r2, and
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Table 4
The equation of permeability coefficient relating to FH2O and diffu-
sion coefficient in different membranes

Membrane β1 a β2 r2 q2

DMPE −51.984 0.817 −1.591 0.853 0.777
DMPG −52.320 0.826 0.455 0.850 0.770
DMPI −51.679 0.821 −1.452 0.852 0.755
DOPC −51.864 0.822 0.556 0.850 0.754
DOPE −52.304 0.826 0.041 0.850 0.753
DOPS −50.043 0.817 −3.290 0.858 0.757
DPPC −57.153 0.856 4.681 0.866 0.798
DPPE −49.456 0.800 7.263 0.885 0.824
DPPG −51.477 0.818 2.865 0.859 0.787
DPPI −52.895 0.832 −1.213 0.851 0.770
DPPS −54.714 0.848 −3.255 0.859 0.783
DSPC −50.273 0.814 3.627 0.865 0.802
DSPE −50.165 0.815 −1.574 0.852 0.783
DSPG −47.820 0.797 6.617 0.876 0.811
PDHS −51.842 0.824 −1.003 0.851 0.769
PSPM −51.633 0.820 −2.247 0.854 0.768
SPM240 −52.867 0.825 1.895 0.853 0.770
SPM241 −52.634 0.829 0.394 0.851 0.764

The general expression isP =α +β1 × (FH2O− a)2 +β2 × D.

cross-validation correlation coefficient,q2. The addi-
tion of diffusion coefficient term enhances the model
reliability and predictability. And there is no obvious
improvement with further increase of terms. The best
values for two-terms FH2O andD in each membrane
are shown inTable 4.

4. Discussion

Our previous finding (Kulkarni et al., 2002.) demon-
strated that the aqueous solvation free energy, F(H2O),
has been shown to correlate to aqueous solubility as
would be expected. Increasingly negative F(H2O) val-
ues corresponds to increasing aqueous solubility of a
solute. This is also in agreement with our study. In our
data, the larger the FH2O value, the higher the aqueous
solubility. And this descriptor ranges from 0.56 to 1.64.
But the quadratic term about this descriptor suggests
that the permeability coefficient decreases with the
increase of the aqueous solubility from a value nearly
at 0.80, while the permeability coefficient decreases
with the decrease of the aqueous solubility below 0.80.
This suggests that a drug with suitable aqueous solu-
bility is important for this compound to have good oral
absorption ability. Our observations are in agreement

with Hilgers’ report that cell permeability is not a lin-
ear relationship with logP (Hilgers et al., 1990). An
increase in logP reflects an increase in lipophilicity.

Although the one-term model suggests that the per-
meability coefficient is linear to FH2O and the two-term
model shows nonlinear relationship, there is no con-
tradiction. GFA algorithm generates multiple QSAR
models when it is applied to optimize MI-QSAR mod-
els. These different models are multiple interpretations
of the data. The “best” model can be selected among
the multiple good models, rather than being forced to
accept a single arbitrarily chosen “best” model. Simi-
larities and differences among these models can be used
to consider alternative mechanisms, which explain the
data, or may lead to new experiments to better under-
stand the system being studied.

In this study, the two-term model suggests diffu-
sion coefficient is the second significant term to predict
permeability coefficient. The influence of the diffusion
coefficient depends on membrane lipids. For example,
the regression coefficient of termD is 0.455 in DMPG
model. For DPPG and DSPG, which have longer acyl
chains, the regression coefficient becomes 2.865 and
6.617, respectively. This result shows that longer acyl
chains will enhance the impact of diffusion coefficient
on permeability. But this tendency is not obvious for
non-glycerol head phospholipids membranes.

For choline head phospholipids membranes, the
addition of double bonds into the hydrocarbon chains
lowers the value of regression coefficient of termD.
T hain
i sion
c 556,
r 240.
T
d into
t ug-
g the
i bil-
i SPM
w The
r
t

ine
h f the
d f the
t wn
i yers
here is a cis double bond in each hydrocarbon c
n DOPC, compared to DSPC. However, the regres
oefficients for DSPC and DOPC are 3.627 and 0.
espectively. This tendency is also shown in SPM
he regression coefficient of the termD is 1.895. It
ecreases to 0.394 while adding one double bond

he longer hydrocarbon chain (SPM241). This s
ests the addition of the double bond will decrease

mpact of the diffusion coefficient to the permea
ty. PDHS has a choline headgroup. It becomes P
hile adding the double bond into the longer chain.

egression coefficient of termD changed from−1.003
o −2.247.

This phenomenon is not shown in ethanolam
ead phospholipids, such as DSPE. The addition o
ouble bonds changes the regression coefficient o

ermD from positive to negative. These models, sho
n Table 4, suggest that different membrane monola
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induce different membrane phospholipids–solute inter-
action mechanism. Diffusion coefficient is not simply
positive or negative proportional to permeability
for all membranes. The bigger diffusion coefficient
only suggests the solute move quicker within the
membrane–solute complex system. It does not mean
that the solute passes through membrane quicker from
one side to another side because the movement is
in the three dimensions. Sometime, the solute moves
back and forth within the membranes. This depends on
the electrostatic/steric properties of the phospholipids
and the interaction between solute and headgroup or
acyl chain. But different phospholipids have different
inherent electrostatic/steric properties. Also hydration
condition of membrane system will produce influence
on solute permeability. Our final models support the
solution–diffusion mechanism of transport is important
in membrane.

It is worthy noting that our models do not show
the linear relationship between the permeability coef-
ficient and the product of the solubility and diffusion
coefficient as we expected. Also no statistically signif-
icant relationship exists between them. The possible
reason is that our solubility and diffusion coefficient
are empirical calculation. There are errors among these
descriptors. The product of these two terms will mag-
nify these errors. Therefore, more sophisticated mem-
brane systems, such as lipid/cholesterol system, mixed
lipids/cholesterol system, will be helpful to describe the

id
of
-

y in

b-
d

0.
dies
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