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Abstract

Membrane-interaction quantitative structure activity relationship (MI-QSAR) analysis was applied to a data set with 18
compounds in 18 different membranes. MI-QSAR was used to estimate the ADMET properties including the transport of
organic solutes through biological membranes. The most important descriptors are the agueous solvation free e@ergy, FH
and diffusion coefficient for all membranes. The correlation coefficiénand cross-validation correlation coefficieqt, for
DMPG membrane is 0.850 and 0.770, respectively. The relationship betweeéndfid permeability is nonlinear. But the detall
effect of aqueous solvation free energy and diffusion coefficient to the permeability depends on the type of membrane. The final
models also support the solution—diffusion mechanism of transport is important in membrane.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction lead to the FDA approval and subsequent marketing of a
new drug. Traditionally, drugs have been “discovered”
Drug discovery and development is an extremely predominantly through random, or targeted, screening
time-consuming and costly process. For every drug efforts, followed by small structural changes in the lead
that reaches the market, there are more than 10,000molecule to optimize the properties responsible for the
compounds synthesized, characterized, and tested fordesired activity. It takes between 7 and 10 years from
biological effects. Hundreds of millions of dollars are initiation of the preclinical drug discovery program to
invested in basic research and clinical studies which initial marketing of resulting drug (excluding regula-
tory delays) Smith, 2002.
mponding author. Present address: Department of Chem- -Th-e study conducted to determm-e the expense of
istry and Biochemistry, University of Delaware, Newark, DE 19716, b”ngm_g a drug to the pharmaceutlcal marke_t took
USA. Tel.: +1 302 831 3522; fax: +1 302 831 6335. place in 1979, at which time the cost was estimated
E-mail address: zhong@udel.edu (J. Liu). to be US$ 54 million Qutlook, 2003. The most recent
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data indicates that this figure has ballooned to US$ 897 successfully applied to construct robust models for both
million in 2003 (Kaitin, 2003. Moreover, despite the  eye and skin irritation for a structurally diverse train-
tremendous development of many new technologies, ing set Kulkarnietal., 200}, and to predict the Caco-2
and a 200-fold increase in initial screening capacity cell permeability of a diverse set of drugsulkarni et
over the past decade, the number of drug candidatesal., 2003. It has subsequently occurred to us that MI-
entering development remains relatively unchanged QSAR is ideally suited for construction QSAR models
over the past 20 years. The fundamental problem seemsfor membrane uptake and transport measures so that it
to be the lack of quality in the lead compounds and can be used to evaluate the absorption and distribution
the corresponding low success rate in the attempted properties in the early stage of drug development.
development of these compounds into drug candidate. It is known that solute transport through a polymer
It is clear that the pharmaceutical industry needs new membrane is either via the pore or partition mechanism.
approaches to lead discovery that will generate lead In the pore mechanism, the solute diffuses through
compounds that will be translate into a higher rate of the water filled pores and in the partition mechanism
success in subsequent development efforts. the solute transport is presumed to occur by a process
Computer-aided molecular modeling is still a rel- involving the dissolution of the solute within the poly-
atively new field, with exciting new methods and mer followed by the diffusion through the membrane.
applications being reported at a staggering rate. New Recent experimental studies of membrane lipids have
methods of performing pharmacophore searching, produced increasingly detailed pictures of the struc-
docking, structure-based design (SBD), quantitative ture of fluid phase lipid at the level of mean positions
structure—activity relationship (QSAR), guantitative and conformations of constituent molecular groups.
structure—property relationship (QSPR), and molecu- These precise experiments yielded structure details that
lar similarity (MS) comparison studies are continually arise from the complex set of intermolecular inter-
being proposed. Some of the approaches are ligand-actions. Computer simulation is the only theoretical
based (iu et al., 2003, others are receptor-dependent approach capable of probing the nature of the inter-
(Pan et al., 2004 Many statistical methods are also actions between atoms on lipid and water molecules,
used in computer-aided drug design (CADD), such and the mechanism by which these interactions lead
as multiple linear regressiof¢ker et al., 1995 par- to the observed structures. Studies of Caco-2 cell per-
tial least-square (PLS) regressidalén et al., 1980 meability in dimyristoylphosphatidylcholine (DMPC)
genetic algorithms Rleischer et al., 1997 cluster membrane have examined the atomic level structure
analysesCronin, 1999 and artificial neural networks  of this system. By doing simulations that are consis-
(Winkler and Burden, 2000; Burden et al., 2000; Jalali- tent with available experimental data, we have already
Heravi and Parastar, 2000 gained an atomic level structural and dynamical picture
It has been suggested that computational models for of the system. Extension of the database of predictions
reliable prediction of ADMET properties are promis- from simulations to a wider class of biologically rel-
ing as early screening tools for drug candidates and evant lipid systems is the aim of the work presented
for designing more successful combinatorial libraries here.
(Rose and Stevens, 2003; Winkler and Burden, 2002 Atomic level simulations of lipid of dipalmi-
In our preceding studylyer et al., 2002, we suc- toylphosphatidylcholine (DPPC) and even more
cessfully applied membrane-interaction quantitative complex systems, including lipid—cholesterol and lipid
structure activity relationship (MI-QSAR) analysis to  protein systems have been carried out by several groups
develop predictive models of blood—brain barrier parti- over the past several yeafSssmann and Berkowitz,
tioning of organic compounds by simulating the inter- 1999; Katragadda et al., 1999; Petrache et al., p002
action of an organic compound with phospholipids- Our studies in DPPC, dimyristoylphosphatidylcholine
rich regions of cellular membranes with resulting (DMPC) and dipalmitoylphosphatidic acid (DPPA)
significant MI-QSAR models/£ =0.845,42 = 0.795). cumulated plenty of experience in membrane dynamic
These computational models have been applied to high simulation Klein et al., 1999 and provided the impe-
throughput screening and were demonstrated to betus for us to go further. The goal of the study reported
highly predictive. MI-QSAR analysis also has been here is to demonstrate the applicability of MI-QSAR
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analysis in different phospholipids and to predict the Table1
drug ADMET properties. We explored structurally Drug name, structure, and permeability coefficient for the training
diverse drugs and their interactions with variety of et

%]

phospholipids through molecular dynamics simulation. Compound Permeability (16 cm/s)
The ability of a molecule to permeate cell membranes Acyclovir 0.25
by passive diffusion is primarily dependent on its par- Alprenolol 25.3
titioning into the membrane layer. The most frequently gigcz"ocme 05532
used physicochemical property to represent this parti- c4fteine 30.8
tioning, and the prediction of cellular permeability, is  clonidine 21.8
the log of the (1-octanol/water) partition coefficient, Dexamethasone 12.2
logP. Other descriptors and modeling/QSAR work Diazepam 33.4
has been done to better understand cell permeability. ggﬂi;:l'g\ir 3 ?‘?’83
The hydrogen bonding capacity and molecular surface petoprolol 237
properties of the solute have been used to constructNadolol 3.88
correlation models for cell permeability. Based on our Phenytoin 26.7
experience in previous studies, our focus here is to con- gg‘li‘;‘l’; cid 1262-20
struct a model using as few as possible descriptors. Sulfasalazine 0.30
Terbutaline 0.47
Timolol 12.8
2. Materials and methods
2.1. Permeation coefficients were used as the initial structures in conformational
sampling.

The dependent variable used in MI-QSAR analysis  Totally 18 different phospholipids were selected as
is the Caco-2 cell permeability coefficienazdanian  model phospholipids in this study, which are listed in
etal. (1998)performed permeability experiments ona  Table 2 For those phospholipids with available atomic
data set of 38 structurally and chemically diverse drugs coordinates, their structures were constructed based on
ranging in molecular weight from 60 to 515amu and the atomic coordinates. Take dimyristoylphosphatidyl-

varying in net charge at pH 7.4. We used only 18 of glycerol (DMPG,Fig. 1) as example: its structure was
them as a training set, which proportionally distributed

between the maximum and minimum value of the per- Table 2
meability coefficient _and fully repreS(_e_nts the _W_hOIe Phospholipids used to construct the membrane monolayer
dataset.Table 1contains the permeability coefficient

. DMPE Dimyristoylphosphatidylethanolamine
valiuc_-:‘s for 18 structurally diverse drugs used as the pypg Dimyristoylphosphatidylglycerol
training set of compounds. DMPI Dimyristoylphosphatidylinositol

DOPC Dioleoylphosphatidylcholine
2.2. MI-QSAR analysis applied to the training set DOPE Dioleoylphosphatidylethanolamine
DOPS Dioleoylphosphatidylserine
. . DPPC Dipalmitoylphosphatidylcholine
2.2.1. Ste'p.]. Building solute molecules and DPPE Dipalmitoylphosphatidylethanolamine
phospholipids monolayer DPPG Dipalmitoylphosphatidylglycerol
All the solute molecules of the training and test DPPI Dipalmitoylphosphatidylinositol
sets, sedable 1 were built usingHyperChem 6.03  DPPS Dipalmitoylphosphatidylserine

: ; i DSPC Distearoylphosphatidylcholine
software. Partial atomic charges were computed usin . . )
9 P 9 DSPE Distearoylphosphatidylethanolamine

the AM1 semi-empirical method, which was imple- 5gpg Distearoylphosphatidylglycerol

mented in the HyperChem program. Each structure ppHs N-Palmitoyldihydrosphingomyelin
was energy minimized using the quantum mechanical PSPM N-Palmitoylsphingomyelin
method, also implemented in HyperChem, without any SPM240 N-Tetracosanoicsphingomyelin

geometric constraint. The energy-minimized structures SPM241 N-Tetracosenoicsphingomyelin
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Fig. 1. Numbering of atoms and torsion angles for the DMPG molecule according to Pashcher. Atoms other than P, O, and N are carbon atoms
with 1, 2, or 3 hydrogen atoms attached.

constructed in HyperChem 6.03 based on the crys- whereS is the molecular surface areathe number
tal structure atomic coordinates froRascher et al.  of hydrocarbon chains per lipid moleculg the cross-
(1987) Calculations at the semi-empirical AM1 level section of the hydrocarbon chains perpendicular to the
were carried out, and DMPG was energy minimized chain axis, ana is the angle of the tilts between the
using the quantum mechanical method. An assembly hydrocarbon chain axis and the layer normal.
of 25 DMPG molecules (5% 5x 1) in (x,y,z) direc-
tions, respectively, was used as the model membrane2-2.2. Step 2: Docking
monolayer. The size of the monolayer simulation sys- 10 prevent unfavorable van der Waals interac-
tem was constructed according to the symmetry of the tions between a solute molecule and the membrane
crystal structure. The cell parameters for an individual Molecules, the center phospholipid molecule, located
phospholipids molecule were 1085x 8.5A x 454, at position £,y) =(3,3) of the 5< 5 monolayer, and a
y=95.2. These parameters result in an average surfacd€st solute molecule was docked into the space cre-
area per phospholipid of 89.28, which is close to  ated by the missing phospholipid molecule. Each of
the reported value of aboutg?glforthefu”y hydrated the test solute molecules of the permeation data set
fluid lamellar phase of DMPG. It was found that the Was docked at three different positions in each phos-
estimated order parameters for these two model bilay- Pholipid monolayer with the most polar group of the
ers agree with one another suggesting that smaller Solute molecule facing toward the headgroup region
assembly is adequate for modeling short-range prop- of the monolayer. Three corresponding MDS models
erties. were generated for each solute molecule with regard to

Phospholipids for which atomic coordinates are not the trial positions of the solute molecule in the mono-
available, their structure were constructed based on thelayer, whichwere: (1) solute molecule in the headgroup
atomic coordinates of their analogues. For example, 'egion, (2) solute molecule between the headgroup and
DSPC was built from the crystal structure atomic coor- the aliphatic chains, and (3) solute molecule in the tail
dinates of DMPC by extending the four -GHgroups region of the aliphatic chains. The three different ini-
in asrans conformation to each of two chains. tial MDS positions of acyclovir, one of the training set

When surface areas are known for selected phos-Solute molecules in DMPG, are shown filg. 2a to
pholipids the data is used to assembly the monolayer. illustrate this dock.
If surface areas are not available, the head group voI—2 23 Sten 3 E L
ume must be the same for conditions where headgroups™<:>; °/éP 2 Enersy minimization .

The energy minimization and following molecular

hemicallyi ical. The E 197 o . ) :
are chemically identica e Efl) (Sugar, 197pwas dynamic simulation were performed using a Molsim

t tain relatin rf rea from its anal . .
;izihce)r??oabuilg tarl1e gtrS:IctSSee areafromts analogues package with an extended MM2 force field. To remove
' unfavorable high-energy van der Waals interactions
S = nk 1) between solute and phospholipid molecules, the energy

- cosgp of the system was minimized by a series of steepest
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Fig. 3. Plot of total potential energy vs. time for acyclovir embedded
in the model of DMPG monolayer.

using each of the three trial solute positions. The ener-
getically most favorable geometry of acyclovir in the
model DMPG monolayer is shown iRig. 20. And

the MDS trajectory of acyclovir in the model DMPG
monolayer is also shown iRig. 3. It is obvious from

the plot that this complex system deceases its potential
energy and that equilibrium is achieved gradually.

Fig. 2. (a) The side view of an acyclovir molecule docked into DMPG
monolayer at three different positions before the energy minimization 2.2.5. Step 5: Calculation of descriptors
with hydrogen atoms not shown. (b) The lowest energy geometry of =" M p ot i tel and I\I/)I | 1995: St

a DMPG-acyclovir complex during MDS with hydrogen atoms not any experimentsRatel an aniey, ; Stern

shown. et al., 1993 suggest that the permeability coefficient
(Pm) can be estimated as the product of the solubility

descentand conjugate gradient minimization steps. Theand diffusion coefficients, which has a relationship as

energy convergence criterion was a gradient of lessthanEgq. (2),

0.5 kcall(& mol). Convergence was generally achieved

within less than 10 ps. Pm= KDm 2

whereDy, is the membrane diffusion coefficier,is
2.2.4. Step 4: Molecular dynamics simulation the membrane-donor partition coefficient.

The model monolayer was first heated to 20K and  We have previously demonstratedulkarni et al.,
then to 50K and from that point in increments of 50K 2002) that the permeation coefficient of solutes corre-
to a final temperature of 311 K. At each temperature |ates with the aqueous solvation free energy, FJH
increment, 2 ps of MDS was carried out to allow for (;2=0.75,42=0.71). Our purpose in this study are to
structural relaxation and distribution of kinetic energy correlate the relationship between permeation coeffi-
throughout the system. After 311K temperature was cientand diffusion coefficient by using dynamic param-
achieved, the whole system was held at this temper- eters based on other membrane phospholipids also
ature and production trajectories were recorded every to correlate this relationship with as few as possible
0.1ps over a 50 ps range for each solute of the datasetdescriptorsTable 3lists the calculated descriptors in
Concurrently, the potential energy of the whole system
and the interaction of each phospholipid and the solute 1,c 3
were also recorded. Only a single solute molecule in The descriptors used in the MI-QSAR descriptor pool
one kind of membrane was explicitly considered in FH,0

The aqueous solvation free energy

each MDS. Each of the solute molecules was placed rocT The 1-octanol solvation free energy
at each of the three different positions in the mono- logP The 1-octanol/water partition coefficient
layer as described above. The lowest energy geometryECOh The cohesive packing energy of the solute molecules

Diffusion coefficient of a solute in the membrane

of the solute molecule in the monolayer was sought
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this study. It should be noted that E@&, FOCT, and els. Detailed descriptions and methods about the GFA
logP are computed using intra-molecular computa- were published in previous papeRaggers and Hopfin-
tional methods. This is also true for Ecoh, the cohesive ger, 1994; Rogers, 1991The best model was judged
energy, which is measurement of the energy required jointly by the correlation coefficient of fit?, and the
to remove a molecule from being surrounded by other leave-one-out cross-validation correlation coefficient,
molecules identical to itself. 4.

The mean square displacement method was used to
calculate diffusion coefficients. In a molecular system,
amolecule moves in three dimensions and its motion of 3. Results
an individual molecule does not follow a simple path.
If the path is examined in close detail, it will be seento ~ The aqueous solvation free energy,JtHhas been
be agood approximation to arandom walk. Mathemat- shown to correlate to agueous SOlUblllty as would be
ically, Einstein showed that mean square displacement €xpected. For all phospholipids membranes, the one-

grows linearly with time, which is shown in E¢3) ~ term models are same, which contain only&Hand
(Einstein, 192k are described by:
<2 >—6Dt+C 3) P = 55212 31634 x FH,0;

n =18, r’> = 0.686 ¢°> = 0.635 (4)

where %2> is the mean square distance arisl time.
D and C are constants. The constaBtis the most Here, n is the number of the trials;? the correla-
important of these and defines the diffusion rate. It is tion coefficient, andg® is the leave-one-out cross-
called the diffusion coefficient. Also, since we have validation correlation coefficient. Because f&is an
many atoms to consider we can calculate a squareintra-molecular solute descriptor (i.e. it is independent
displacement for all of them. This is what makes the of membrane or interaction of the solute-membrane
mean square displacement (or MSD for short) scientif- complex system, for all membrane monolayers, the
ically significant. Through its relation to diffusionitis  one-term model remains constant.

ameasurable quantity, one which relates directlytothe By taking into account both first order and second
underlying motion of the molecules. For each trajectory order terms, the following model produces highér
frame in the MDS trajectory, the average movement andg? value for all membranes than modé) has:

Ad; of asolute molecule, relative to the previous frame,

2.
was determined. P =40.156— 14.653 x FH,0O";

n =18 r’> =0.764 ¢°> = 0.704 (5)
2.2.6. Step 6: Construction of a model for the This model suggests a nonlinear relationship
membrane between FHO and the permeability coefficient. Eq.

MI-QSAR models for each membrane were built () js mathematically better than Eg) based on?2
and optimized using multidimensional linear regres- \5jye, and it is also more statistically significant based
sion fitting and the genetic function approximation ong? value.

(GFA) (Rogers and Hopfinger, 1984vhich is a multi- Combining the FHO with other descriptors by
dimensional optimization method based on the genetic sing nonlinear expression, all of phospholipids mono-
algorithm paradigm. Both linear and quadratic rep- |ayers produce statistically significant prediction model

resentations of each of the descriptor values were {,5n only using FHO square as descriptor. Take
included in the trial descriptor pool, and MI-QSAR  pMPG as example, the model is:

models were built as a function of the number of

descriptor termsinthe model. Statistical significancein P = 29.613— 52.320x (FH0 — 0.826)2 + 0.455
the optimization of an MI-QSAR model was based on . _ 2 2

Friedman'’s lack of fit (LOF) measure. The LOF mea- xD; - n =18 77 = 0850 ¢° = 0.770 ©6)
sure is designed to resist overfitting which isa problem  This shows that the model has significant
often encountered in construction of statistical mod- improvement both on correlation coefficienf, and
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Table 4 with Hilgers’ report that cell permeability is not a lin-
The equat_ic_)n of_per'meability coefficient relating tof&Hand diffu- ear relationship with lo@ (Hilgers et al., 199D An

sion coefficient n different membranes increase in log reflects an increase in lipophilicity.
Membrane  f a P2 ” 7 Although the one-term model suggests that the per-
DMPE -51.984 0817 -1591  0.853 0.777 meability coefficientis linearto F#O and the two-term
DMPG —52.320  0.826 0455  0.850  0.770  mpde| shows nonlinear relationship, there is no con-
nglc :gi:ggi 8:2;2 _16‘?26 068;220 0'07.32 4, tradiction. GFA_aIgorit.hm generates multiple QSAR
DOPE _52304 0.826 0041 0850 0753 Mmodelswhenitis applied to optimize MI-QSAR mod-
DOPS —-50.043 0.817 -3.290 0858 0.757 els. These different models are multiple interpretations
DPPC —57.153  0.856 4681 0866 0.798 of the data. The “best” model can be selected among
DPPE —49.456  0.800  7.263  0.885  0.824  the my|tiple good models, rather than being forced to
B;:G :g;:g;; 8:2;2 71.22'21325 0%251)9 0?7';37 accept a single arbitrarily chosen “best” model. Simi-
DPPS _54714 0848 -3255 0859 0783 laritiesanddifferences amongthese models canbeused
DSPC —50.273  0.814 3627 0865 0802 toconsider alternative mechanisms, which explain the
DSPE —50.165 0.815 -1574 0.852 0.783  data, or may lead to new experiments to better under-
DSPG —47.820  0.797 6.617 0876 0811  giand the system being studied.

?;;\SA :gi:ggg 8:253 :;:223 8:221 g:;gg _ In this .study_, the two—term_mgt_:iel suggests diffl_J—
SPM240 _52867 0825 1895 0853 0770 Sioncoefficientis the second significantterm to predict
SPM241 —52.634  0.829 0.394 0.851 0.764 permeability coefficient. The influence of the diffusion

coefficient depends on membrane lipids. For example,
the regression coefficient of terfhis 0.455 in DMPG
model. For DPPG and DSPG, which have longer acyl
cross-validation correlation coefficienf?. The addi-  chains, the regression coefficient becomes 2.865 and
tion of diffusion coefficient term enhances the model 6.617, respectively. This result shows that longer acyl
reliability and predictability. And there is no obvious  chains will enhance the impact of diffusion coefficient
improvement with further increase of terms. The best on permeability. But this tendency is not obvious for
values for two-terms FD andD in each membrane  non-glycerol head phospholipids membranes.
are shown irfable 4 For choline head phospholipids membranes, the
addition of double bonds into the hydrocarbon chains
lowers the value of regression coefficient of tefm
4. Discussion There is a cis double bond in each hydrocarbon chain
in DOPC, compared to DSPC. However, the regression
Our previous findingKulkarni et al., 2002 demon- coefficients for DSPC and DOPC are 3.627 and 0.556,
strated that the aqueous solvation free energyp ©{iH respectively. This tendency is also shown in SPM240.
has been shown to correlate to aqueous solubility as The regression coefficient of the ternis 1.895. It
would be expected. Increasingly negative F(Hl val- decreases to 0.394 while adding one double bond into
ues corresponds to increasing aqueous solubility of athe longer hydrocarbon chain (SPM241). This sug-
solute. This is also in agreement with our study. In our gests the addition of the double bond will decrease the
data, the larger the F}D value, the higher the aqueous impact of the diffusion coefficient to the permeabil-
solubility. And this descriptor ranges from 0.56 to 1.64. ity. PDHS has a choline headgroup. It becomes PSPM
But the quadratic term about this descriptor suggests while adding the double bond into the longer chain. The
that the permeability coefficient decreases with the regression coefficient of terid changed from-1.003
increase of the aqueous solubility from a value nearly to —2.247.
at 0.80, while the permeability coefficient decreases  This phenomenon is not shown in ethanolamine
with the decrease of the aqueous solubility below 0.80. head phospholipids, such as DSPE. The addition of the
This suggests that a drug with suitable aqueous solu- double bonds changes the regression coefficient of the
bility is important for this compound to have good oral termD from positive to negative. These models, shown
absorption ability. Our observations are in agreement in Table 4 suggest that different membrane monolayers

The general expressionfs=a + 1 x (FH20 — a)? + B2 x D.
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induce different membrane phospholipids—solute inter-
action mechanism. Diffusion coefficient is not simply
positive or negative proportional to permeability
for all membranes. The bigger diffusion coefficient
only suggests the solute move quicker within the

membrane—solute complex system. It does not mean
that the solute passes through membrane quicker from
one side to another side because the movement is
in the three dimensions. Sometime, the solute moves .
back and forth within the membranes. This depends on

the electrostatic/steric properties of the phospholipids

and the interaction between solute and headgroup or

acyl chain. But different phospholipids have different
inherent electrostatic/steric properties. Also hydration
condition of membrane system will produce influence
on solute permeability. Our final models support the
solution—diffusion mechanism of transportis important
in membrane.

It is worthy noting that our models do not show
the linear relationship between the permeability coef-
ficient and the product of the solubility and diffusion
coefficient as we expected. Also no statistically signif-
icant relationship exists between them. The possible
reason is that our solubility and diffusion coefficient
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ment. Methuen & Co. Ltd., London.

Essmann, U., Berkowitz, M.L., 1999. Dynamical properties of phos-
pholipids bilayers from computer simulation. Biophys. J. 76,
2081-2089.

Falck, E., Patra, M., Karttunen, M., Hyvonen, M.T., Vattulainen, I.,
2004. Impact of cholesterol on voids in phospholipid membranes.
J. Chem. Phys. 121, 12676-12689.

Fleischer, R., Wiese, M., Troschutz, R., Zink, M., 1997. 3D-QSAR
analysis and molecular modeling investigations of piritrexim and
analogues. J. Mol. Mod. 3, 338-346.

Glen, W.G., Dunn, W.J., Scott, D.R., 1989. Principal components
analysis and partial least squares. Tetrahedron Comput. Methods
2,349-354.

Hilgers, A.R., Conradi, R.A., Burton, P.S., 1990. Caco-2 cell mono-
layers as a model for drug transport across the intestinal mucosa.
Pharm. Res. 7, 902-910.
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are empirical calculation. There are errors among these yer, M., Mishra, R., Han, Y., Hopfinger, A.J., 2002. Predict-

descriptors. The product of these two terms will mag-

nify these errors. Therefore, more sophisticated mem-
brane systems, such as lipid/cholesterol system, mixed

lipids/cholesterol system, will be helpful to describe the
interaction among solutes and lipid moleculésl¢tk

et al., 2004. Further investigation about solute—lipid
complex simulation and more accurate prediction of
solubility will be highly significant to resolve this prob-
lem. Part of these work are already under the way in
our group.
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